Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(13): 6434-6441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35894999

RESUMO

Leishmaniasis disease is a serious public health problem. This disease reaches about 10 to 12 million people, and 20-30 thousand people die yearly. The disease treatment is realized through pentavalent antimonial and glucantime. However, some studies indicated that these drugs presented high toxicity and cost. Therefore, it is urgent the search for new drugs that may combat this disease and are less toxic. This work analyzed for the first time the interaction potential of (E)-1-(4-aminophenyl)-3-phenylprop-2-en-1-one (C1), (E)-1-(4-aminophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one (C4), (E)-1-(4-aminophenyl)-3-(4ethoxyphenyl)-prop-2-en-1-one (C9) chalcones through in silico approach. The molecular docking and the molecular electrostatic potential results indicated that the chalcones analyzed presented a strong interaction with the Leishmania major receptor, with affinity energy similar to the ligand co-crystallized. Besides, the interaction potential energy analysis from molecular dynamics simulations indicated the C9 ligand interacted more strongly than the 4-bromo-2,6-dichloro-N-(1,3,5-trimethyl-1H-pyrazolyl) benzenesulfonamide ligand with the Leishmania major receptor, especially for the Phe 88, Tyr 217 and His 219 residues. Therefore, the C9 chalcone might potentially treat Leishmaniasis disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Chalconas , Leishmania , Leishmaniose , Humanos , Antiparasitários/uso terapêutico , Chalconas/farmacologia , Chalconas/química , Simulação de Acoplamento Molecular , Ligantes , Leishmaniose/tratamento farmacológico
2.
J Biomol Struct Dyn ; 41(13): 6326-6344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35943030

RESUMO

Coronavirus disease (COVID-19) has the virus that causes the SARS-CoV-2 severe acute respiratory syndrome, which has reached a pandemic proportion, with thousands of deaths worldwide already registered. It has no standardized effective clinical treatment, arousing the urgent need for the discovery of bioactive compounds for the treatment of symptoms of COVID-19. In this context, the present study aimed to evaluate the influence of seasonality on the yield and chemical composition of the essential oils of Piper cernuum and Piper rivinoides as well as to evaluate the anti-SARS-CoV-2 potential of the major components of each oil by molecular docking and quantum chemical calculation (Density Functional Theory method), being possible indicate that the winter and autumn periods, the seasons of the year where it is possible to obtain the highest percentage of Piper cernuum and Piper rivinoides oils, respectively. Regarding the anti-SARS-Cov-2 potential, the present work showed that the dihydroagarofuran present in Piper cernuum, presented a strong interaction with amino acid residues from Mpro, presenting a potential similar to Remdesivir, a drug for clinical use. Regarding methyltransferase, dihydroagarofuran (Piper cernuum) and myristicin (Piper rivinoids) showed better affinity, with important interactions at the active site of the inhibitor Sinefugin, suggesting a potential inhibitory effect of the heterodimer methyltransferase complex NSP16-NSP10 SARS Cov-2. Molecular docking and molecular dynamics studies represent an initial step, being indicative for future in vitro studies of dihydroagarofuran and myristicin, as possible pharmacological tools for COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Óleos Voláteis , Piper , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/metabolismo , Metiltransferases/química , Estações do Ano , Teoria da Densidade Funcional , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Piper/química , Simulação de Dinâmica Molecular , Inibidores de Proteases
3.
J. Health Biol. Sci. (Online) ; 10(1): 1-12, 01/jan./2022. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1378476

RESUMO

Objective: Analyze lysosomotropic agents and their action on COVID-19 targets using the molecular docking technique. Methods: Molecular docking analyses of these lysosomotropic agents were performed, namely of fluoxetine, imipramine, chloroquine, verapamil, tamoxifen, amitriptyline, and chlorpromazine against important targets for the pathogenesis of SARS-CoV-2. Results: The results revealed that the inhibitors bind to distinct regions of Mpro COVID-19, with variations in RMSD values from 1.325 to 1.962 Å and binding free energy of -5.2 to -4.3 kcal/mol. Furthermore, the analysis of the second target showed that all inhibitors bonded at the same site as the enzyme, and the interaction resulted in an RMSD variation of 0.735 to 1.562 Å and binding free energy ranging from -6.0 to -8.7 kcal/mol. Conclusion: Therefore, this study allows proposing the use of these lysosomotropic compounds. However, these computer simulations are just an initial step toward conceiving new projects for the development of antiviral molecules.


Objetivo: aAnalisar agentes lisossomotrópicos e sua ação em alvos de COVID-19 usando a técnica de docking molecular. Métodos: Foram realizadas análises de docagem molecular destes agentes lisossomotrópicos, nomeadamente de fluoxetina, imipramina, cloroquina, verapamil, tamoxifeno, amitriptilina e clorpromazina contra alvos importantes para a patogenia do SARS-CoV-2. Resultados: Os resultados revelaram que os inibidores se ligam a regiões distintas do Mpro COVID-19, com variações nos valores de RMSD de 1.325 a 1.962 Å e energia livre de ligação de -5,2 a -4,3 kcal/mol. Além disso, a análise do segundo alvo mostrou que todos os inibidores se ligaram no mesmo sítio da enzima, e a interação resultante em uma variação de RMSD de 0,735 a 1.562 Å e energia livre de ligação variando de -6,0 a -8,7 kcal/mol. Conclusão: Portanto, este estudo permite propor o uso desses compostos lisossomotrópicos. No entanto, essas simulações em computador são apenas um passo inicial para a concepção de novos projetos para o desenvolvimento de moléculas antivirais.


Assuntos
SARS-CoV-2 , COVID-19 , Antivirais , Cloroquina , Programas de Rastreamento , Fluoxetina , Amitriptilina , Imipramina
4.
Chem Biol Interact ; 361: 109920, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461787

RESUMO

Chagas disease is a disease that is emerging in North America and Europe countries. Benznidazole is the main drug available, but it has high toxicity and low efficacy in the chronic phase. In this way, researching new antichagasic agents is necessary. Thus, the aim of this study is to evaluate the effect of novel chalcones and the influence of chlorine substitutions on Trypanosoma cruzi and host cells. Unsubstituted (1), 4-chlorine substituted (2) and 2,4-chlorine substituted (3) chalcones were synthesized by Claisen-Schmidt condensation, characterized, and electrical distribution was assessed by Density Fuctional Theory (DFT). The host cells toxicity (LLC-MK2) was performed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay. The effect on epimastigote (24, 48 and 72h), trypomastigote (24h) and amastigotes (24 h) was evaluated. Flow cytometry assays were performed with 7-Aminoactinomycin D (7-AAD) and Annexin-PE, Dichlorofluorescein diaceteate (DCFH-DA) and Rhodamine123 (Rho123). Finally, molecular docking predicted interactions between chalcones and cruzain (TcCr) and trypanothione reductase (TcTR). The toxicity on host cells was reduced almost twenty times on chlorine substituted molecules. On epimastigote and trypomastigote forms, all substances presented similar effects. After treatment with molecule 3, it was observed a decrease in infected cells and intracellular amastigotes. Their effect is related to necrotic events, increase of cytoplasmic Reactive Oxygen Species (ROS) and mitochondrial dysfunction. Also, this effect might be associated with involvement of TcCr and TcTR enzymes. Therefore, the results showed that chlorine substitution on chalcones reduces the host cell's toxicity without compromising the effect on Trypanosoma cruzi Y strain forms, and it occurs over membrane damage, oxidative stress and possible interactions with TcCr and TcTR.


Assuntos
Doença de Chagas , Chalcona , Chalconas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Chalcona/farmacologia , Chalconas/farmacologia , Chalconas/uso terapêutico , Cloretos/farmacologia , Cloro , Humanos , Simulação de Acoplamento Molecular , Tripanossomicidas/farmacologia
5.
Comput Biol Chem ; 71: 82-88, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28987295

RESUMO

Chlorhexidine (CHD), a germicidal drug, has degradation products that can be hemotoxic and carcinogenic. However, there is no consensus in literature about the degradation pathway. In order to shed light on that mechanism, we have employed Density Functional Theory to study reactants, in different protonation states, products and intermediates involved in the different pathways. Based on free energy values comparison and frontier molecular orbital analysis, we have obtained the most stable structures in each protonation state. CHD in saturated form has HOMO localized in one p-chloroaniline, and, due to molecule's symmetry, HOMO-1 has contributions from the other side of the molecule, but mainly from the biguanide portion of the molecule, instead of from the p-chloroaniline. For the saturated form, we have studied two possible degradation pathways, starting from the monoprotonated structure, and three pathways starting from the neutral structure. We found out that the mechanisms proposed in literature, whose pathways lead to p-chloroaniline (PCA) formation in a smaller number of steps, are more likely than the mechanisms with more intermediate steps or pathways that do not predict PCA formation. Also, based on free energy results, we have found that the formation of another sub-product (PBG-AU) is favorable as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...